

Distribution Statement A – Approved for Public Release, Distribution Unlimited

AIxCC Final Competition

Procedures and Scoring Guide

Release Date 06/06/2025
Version 2

Defense Advanced Research Projects Agency
Information Innovation Office

675 North Randolph Street
Arlington, VA 22203-2114

AIxCC Procedures & Scoring Guide V2 Page 2 of 39

Table of Contents

1 Overview 6

1.1 Document Purpose 6

1.2 Document Terminology 6

1.3 AFC Rounds Format 6

1.4 Schedule 7

1.5 Round Details 7

1.6 AFC Objectives 8

1.7 Document Status 8

1.8 Competition Archive 8

2 Challenges 9

2.1 Overview 9

2.2 Challenge Basis 9

2.3 Challenge Harness 9

2.3.1 Analysis Tooling 10

2.4 Languages 10

2.5 Challenge Vulnerabilities 10

2.5.1 Challenge-Introduced Vulnerabilities 10

2.5.2 Zero-Day Vulnerabilities 11

2.6 Challenge Parameters 11

2.6.1 Challenge Deadline 11

2.6.2 Challenge Types 11

2.7 Functional Tests 11

2.8 Challenge Examples 12

3 Cyber Reasoning System (CRS) 13

3.1 Overview 13

3.1.1 Competition API Submission Evaluation 14

3.1.1.1 Completeness Checks 14

3.1.1.2 Automated Verification 14

3.1.1.3 Post-Round Analysis and Audits 14

3.2 Vulnerability Discovery 14

3.2.1 Proof of Vulnerability (PoV) 14

3.2.1.1 Variant PoVs 14

3.2.2 Proof of Vulnerability Submission 15

3.2.2.1 Duplicate PoVs 15

3.2.3 Proof of Vulnerability Evaluation 15

3.3 Patching 16

3.3.1 Generated Patches 16

AIxCC Procedures & Scoring Guide V2 Page 3 of 39

3.3.2 Generated Patch Submission 16

3.3.2.1 Duplicate Patches 16

3.3.3 Generated Patch Evaluation 16

3.4 SARIF Assessment 17

3.4.1 SARIF Assessment Criteria 17

3.4.2 SARIF Assessment Submission 18

3.4.3 SARIF Assessment Evaluation 18

3.5 SARIF Generation 18

3.5.1 SARIF Report Submission 18

3.6 Bundling 18

3.6.1 Bundle Submission 18

3.7 CRS Development Constraints 19

3.7.1 Azure Subscription 19

3.7.1.1 Azure Development Budget 19

3.7.2 GitHub Repositories 19

3.7.2.1 LICENSE File 19

3.7.3 Custom Models 19

3.7.3.1 Custom Model License 20

3.8 Framework APIs and Specifications 20

3.8.1 Telemetry Specification 21

3.9 CRS Solution Deadlines 21

3.10 Round Execution Constraints 21

3.10.1 CRS Provisioning and Startup 21

3.10.2 Post Round 21

3.10.3 Round Execution Budgets and Limits 22

3.10.3.1 Azure and LLM Budget Items 22

3.10.3.2 LLM Round Execution Query Capacities 22

3.10.4 Large Language Model API Telemetry 22

3.10.5 Networking 23

3.11 CRS Disqualification Guidelines 23

3.11.1 No Superman Defenses 23

3.11.2 No Malicious Patches 23

3.11.3 No Phoning Home 24

3.11.4 No Gaming the Scoring Algorithm 24

3.11.5 No Hacking the Infrastructure 24

3.11.6 No Misuse of Collaborator Credits and Resources 24

3.11.7 No Obfuscation Tactics in Custom Models 24

3.11.8 No Pre-baking Models 24

3.11.9 No Gaming the Challenge Code Basis 24

AIxCC Procedures & Scoring Guide V2 Page 4 of 39

4 AFC Scoring 25

4.1 Scoring Design Objectives 25

4.1.1 Areas of Excellence 25

4.2 Scoring Algorithm 26

4.2.1 Team Score 26

4.2.2 Challenge Score 26

4.2.2.1 Accuracy Multiplier 26

4.2.2.2 Vulnerability Discovery Score 28

4.2.2.3 Program Repair Score 28

4.2.2.4 SARIF Assessment Score 29

4.2.2.5 Bundle Score 30

4.2.3 Non-Scoring Excellence Recognition 32

4.3 Further Details 32

4.3.1 Accuracy Multiplier Calculations 32

4.3.2 PoV Crash Evaluation Methodologies 33

4.3.3 Deduplication Methodologies 33

4.3.4 Patch Scoring Extended 33

4.3.5 Scoring Patch Selection Process 34

5 Unscored Research 36

5.1 Unharnessed Challenges 36

5.2 Unscored Research Budgets 36

5.3 Unscored Research Outputs 36

5.4 Unscored Research Recognition 36

5.5 Unharnessed Artifact Endpoint 36

Appendix A - Acronyms 37

Appendix B - MIT License File 38

Appendix C - Round Execution Arbitration Process 39

Arbitration Process Framework 39

AIxCC Procedures & Scoring Guide V2 Page 5 of 39

Document Change Summary

The AIxCC competition guidelines will be updated throughout the competition period (Fall 2023 –

August 2025). Please check for updates regularly and send any questions or feedback to aixcc@darpa.mil.

Version Section(s) Change Description Date

1.0 All Release 1.0 (AFC) 03/12/2025

2.0

2.6.2; 3.2;
3.3; 3.4;

3.4.1; 3.7.3;
3.7.3.1;
3.10.3;

3.10.5; 4.2.2;
4.3.1; 4.3.3;
4.3.4; 4.3.5

Duplicate and variant submission clarifications; PoV,
Patch, and SARIF submission rule clarifications; Custom
model clarifications and pre-approval timeline; Open-sourcing

Custom Model License; LLM Budgets; Scoring updates and
clarifications; Added Section 4.3.5

06/06/2025

AIxCC Procedures & Scoring Guide V2 Page 6 of 39

1 Overview

1.1 Document Purpose

This AIxCC Final Competition Procedures and Scoring Guide describes the format, procedures, and

scoring for the AIxCC Final Competition (AFC), which will take place over a series of rounds in 2025.

The purpose of this document is to inform teams of what to expect in the AFC by describing the AFC

format, challenges, Cyber Reasoning System (“CRS”) evaluation methods, and scoring.

This guide replaces the “AIxCC Semifinal Competition (ASC) Procedures and Scoring Guide” and

formally codifies any “Technical Notes” previously published via Slack. This document is intended to be

completely consistent with previous AFC information, but to the extent that discrepancies exist, this

document is controlling. Importantly, this document does not in any way supersede the AIxCC Rules,

which can be found on the AIxCC website: https://aicyberchallenge.com/rules/. Teams and their

respective CRSs must adhere to all rules and requirements stated in the AIxCC Rules.

1.2 Document Terminology

The AFC is executed in a series of “rounds.” In each round, CRSs will be presented with “challenges”

to solve. This is accomplished as request/response dialogs between the “CRS” and the “competition

framework.”

Teams must implement a set of services referred to as the “CRS API” for receiving tasks from the

competition framework. Likewise, AIxCC Organizers will create a set of services for receiving

submissions from CRSs referred to as the “competition API.”

During round execution, the competition framework interacts concurrently with all CRSs; it sends

challenges and evaluates submissions sent by CRSs. Each CRS solves challenges and sends submissions.

“API Details and Documentation” refers to the version-controlled specifications and documentation

contained in AFC GitHub repositories. This is where technical details such as endpoint URLs, field level

messages, and API and telemetry documentation are located. “CRS Specification” refers to the Cyber

Reasoning System section (Section 3) of this document. The AFC repository can be found at:

https://github.com/aixcc-finals/example-crs-architecture.

1.3 AFC Rounds Format

The AFC will take place over three (3) unscored exhibition rounds and one (1) scored round. For each

round, each CRS will receive a series of challenges. CRSs may receive multiple tasks at once. For each

challenge, the CRS has a limited amount of time to find and fix vulnerabilities by sending submissions to

the competition API for evaluation. At the same time, the CRS will have additional scoring opportunities

by demonstrating a capability to assess static descriptions of potential vulnerabilities formatted as Static

Analysis Results Interchange Format (SARIF) reports and to bundle its vulnerability discoveries, patches,

and assessments.1

1 https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

https://aicyberchallenge.com/rules/
https://github.com/aixcc-finals/example-crs-architecture

AIxCC Procedures & Scoring Guide V2 Page 7 of 39

When a round is complete, organizers will provide the competitors with access to their respective CRS

data collected during round execution for the respective team’s CRS. Teams should use this feedback to

improve their CRS for the next round, as applicable.

1.4 Schedule

A series of three mandatory but unscored exhibition rounds, designed to ensure that all APIs operate as

expected and to provide teams with useful feedback, will open on April 1, 2025. The scored round will

open on June 26, 2025.

Table 1 outlines the round schedule although these dates and times may be subject to change. The round

open date specifies the time at which all competitors are expected to have their CRS in a healthy state and

ready for tasking within their provided round-specific Azure subscription.

This information should be considered informative in nature. The authoritative document outlining the

dates and times for round openings is the AIxCC Rules document. Should there be any future changes to

the schedule, they will be reflected in the AIxCC Rules document.

Table 1: Round Schedule

Round Name Scoring Status Round Open Date/Time

Exhibition Round 1 Unscored 2025-04-01 15:00:00 UTC

Exhibition Round 2 Unscored 2025-05-06 15:00:00 UTC

Exhibition Round 3 Unscored 2025-06-05 15:00:00 UTC

Final Round Scored 2025-06-26 15:00:00 UTC

1.5 Round Details

To assess a wider spectrum of CRS capabilities and focus on certain aspects of the CRS, round details

will vary for each round. For example, a round may be focused solely on a particular challenge type (see

Section 2.6.2).

Round details will include, but are not limited to:

● Round open date/time

● The approximate duration for each challenge

● The maximum number of concurrent challenges

● The total number of challenges (by challenge type)

● The maximum LLM budget

● The maximum Azure budget

● If unharnessed challenges will be included in the round (see Section 5.1)

AIxCC Organizers will provide concrete details no less than thirty (30) days prior to the round.

AIxCC Procedures & Scoring Guide V2 Page 8 of 39

Other details, such as unplanned changes to competition APIs or other third-party software dependencies,

will be released on a case-by-case basis as necessary.

If there are any questions about the details, please use the appropriate Slack channel for communication.

1.6 AFC Objectives

Objectives of the AFC include the following:

● Seed the next generation of software companies that will be able to address the growing need for

remediating software security issues at scale.

● Inspire and cultivate cybersecurity innovators to steer bright new minds toward an AI-aligned

cybersecurity career path.

● Promote and facilitate adoption of AI-driven security analysis tools across open source software

projects.

● Expand security analysis of open source software projects aligned to critical infrastructure

sectors.

● Foster growth and adaptation of existing and potentially new foundational AI models toward

security-centric use cases.

● Generate one or more software applications that can be transitioned for real-world use to assess,

find, and fix software bugs.

1.7 Document Status

The information provided in this document is intended to be an accurate representation of the current

design for the AFC. While Organizers do not anticipate major changes, the information herein is subject

to change at the sole discretion of DARPA.

1.8 Competition Archive

Organizers intend to publicly release salient AIxCC artifacts upon completion of the AFC. The format of

the archive is under development.

AIxCC Procedures & Scoring Guide V2 Page 9 of 39

2 Challenges

This section defines and describes an AFC challenge, its constituent parts, and a description about how to

build and run security tests. Note, details on the gameplay with respect to challenges are introduced in

Section 3.1 and described in subsections of Section 3. SARIF, which is a scorable aspect of the AFC, is

described starting in Section 3.1.

2.1 Overview

During a round, several sets of challenges will be sent to each CRS for analysis. These challenges

represent realistic scenarios in which a CRS could provide significant value to source code maintainers

and contributors.

There are two types of challenges in the AFC: “full-scan” and “delta-scan.” Both are described in Section

2.6.2. Details on differences in scoring between the two are described in Section 4.

Each challenge contains the following:

● Source code for the challenge. For “delta-scan” challenges, this includes additional data in unified

diff format containing proposed changes to the source code,2

● Tasking parameters for the challenge, such as challenge type (delta-scan or full-scan) and a

deadline timestamp which specifies a time limit for the challenge, and

● Analysis tooling to provide a standardized method of building, running, and testing the challenge

source code.

2.2 Challenge Basis

Each challenge has a basis, which is a real-world project that may be critical to industry, national security,

and the public. No challenge or basis will be disclosed prior to the start of AFC round execution.

For some challenges, the basis has been modified to contain:

● An unspecified number of challenge-introduced vulnerabilities.

● Additional features and functionality.

In addition, due to the nature of the competition, any challenge basis may include an unknown number of

pre-existing (zero-day) vulnerabilities which can be scorable.

During the AFC, any number of challenges may share the same challenge basis, and the challenge source

code will differ between challenges, even those sharing the same basis.

Note that a challenge basis may be referred to as a “challenge repository.”

2.3 Challenge Harness

Each challenge base is paired with one or more challenge harnesses which, when built, are binary entry-

points for CRS-generated data to be used to exercise vulnerabilities. The source code for challenge

harnesses may exist in the challenge source code or be accessible from the provided analysis tooling.

2 https://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html

AIxCC Procedures & Scoring Guide V2 Page 10 of 39

The challenge harnesses for AFC are in the style of libFuzzer fuzz targets and include both C and Java

harnesses. 3,4 The analysis tooling supplied with each challenge provides a standardized way to build all

challenge harnesses.

2.3.1 Analysis Tooling

Each challenge includes analysis tooling that provides a standard method of building the challenge

harnesses with various sanitizers, architectures, and engines, as well as executing the challenge harnesses

with supplied input test data. The analysis tooling may also provide additional information related to the

challenge source code, harnesses, build, and test processes.

The AFC will use analysis tools compliant with The Open Application Security Testing5 (TOAST)

Specification, which is being developed for AIxCC and made available to competitors to view and work

with ahead of the AFC. Although under iterative development, the exact analysis tooling version that will

be used for each round will be included in the details released ahead of each round. Any modifications to

the AFC analysis tooling between rounds will be minimal and will not break backwards compatibility

with prior round usage.

2.4 Languages

The AFC will focus on vulnerabilities found in:

● The C programming language

● The Java programming language

While each challenge basis and challenge harnesses may contain code in a variety of languages, only

vulnerabilities found in C and Java are in scope.

2.5 Challenge Vulnerabilities

Challenges contain an unspecified number of vulnerabilities that can be discovered and patched. The

origin of any given vulnerability is either challenge-introduced or pre-existing (zero-day).

An AFC vulnerability is defined as one which enables a harness-reachable crash and will be evaluated

and scored as such (see Section 3.2.1).

For scoring and evaluation purposes, challenge vulnerabilities are defined in an inductive process based

on a combination of the results from the round and the competition-designed vulnerability PoVs and

patches, rather than explicitly defined ahead of time. See Section 3.2 for detail.

2.5.1 Challenge-Introduced Vulnerabilities

Challenges may include any number of synthetic vulnerabilities introduced by the AIxCC Organizers.

These vulnerabilities will be designed to mimic real-world issues, and all will be scorable.

3 https://llvm.org/docs/LibFuzzer.html#fuzz-targe
4 https://www.code-intelligence.com/blog/how-to-write-fuzz-targets-for-java-applications
5 https://github.com/aixcc-finals/toast

AIxCC Procedures & Scoring Guide V2 Page 11 of 39

2.5.2 Zero-Day Vulnerabilities

Since challenges are based on real-world software, vulnerabilities that were not intentionally introduced

may be discovered by a CRS. Those vulnerabilities are scorable if they can be demonstrated by a harness-

reachable crash.

2.6 Challenge Parameters

A component of the challenge includes parameters that constrain the CRS while processing the task.

Examples include time limits and types; both parameters are described below.

2.6.1 Challenge Deadline

Challenges are designed to enable time constraining the CRS with respect to vulnerability discovery and

patch generation. Any submissions that occur after the deadline specified in the task will be rejected by

the competition API.

2.6.2 Challenge Types

Challenges will be one of two types: “full-scan” and “delta-scan.”

● In a full-scan challenge, the challenge source code is the modified basis.

● In a delta-scan challenge, the challenge “base state” is the modified basis, and the “delta state” is

the base state with an additional change (“diff”) applied that represents a delta from the base

state.

In a full-scan challenge, the CRS must find and fix vulnerabilities anywhere in the source code, reachable

and crashable via the challenge harnesses.

In a delta-scan challenge, the CRS must find and fix vulnerabilities that the delta has explicitly introduced

or revealed. For any given delta-scan challenge, the vulnerabilities themselves may exist in either the base

state or the delta, but the harness-reachable crash(es) can only be caused after the delta is applied.

For example, consider an existing vulnerability that is not “enabled” in the base state. If the delta-scan

diff changes configuration settings which now enable that code, this vulnerability is scorable for the delta-

scan challenge because it is now reachable due to the delta, whereas before it was unreachable.

2.7 Functional Tests

The base source code for a given challenge will have one or more functional tests used to assess patch

quality.

● Tests for a given challenge may include all pre-existing public tests, as well as organizer-created

tests specific to the challenges.

● For any given challenge, the CRS may or may not be provided a standardized method of running

functional tests, and as such, should be able to handle both cases.

AIxCC Procedures & Scoring Guide V2 Page 12 of 39

2.8 Challenge Examples

Organizers have provided a tool to generate a challenge based on a given set of parameters. The resulting

challenge is encapsulated in a JavaScript Object Notation (JSON) blob that matches the description in the

API Details and Documentation. The tool supports generation of both “delta-scan” and “full-scan”

challenge types with example vulnerabilities introduced.

The tool, documentation, and examples can be found here:

https://github.com/aixcc-finals/generate-challenge-task

https://github.com/aixcc-finals/generate-challenge-task

AIxCC Procedures & Scoring Guide V2 Page 13 of 39

3 Cyber Reasoning System (CRS)

This section provides a high-level overview of how a round is executed and defines vulnerability

discovery, patch generation, and SARIF assessment submissions. It also contains:

● Requirements and specifications for both CRS development and CRS runtime (round execution),

including how and when to submit CRS solutions;

● References to examples and detailed API specifications and documentation; and

● Disqualification guidelines for a CRS.

3.1 Overview

Each team will develop a CRS capable of automatically processing a set of AFC challenges while

conforming to all rules and constraints of the AIxCC Rules and this document. Challenges are fully

defined in Section 2. Elements of the AFC also involve SARIF reports. A SARIF report can be used as a

structured way to represent and convey vulnerability information. The AFC uses SARIF in two primary

ways. The first, “SARIF generation” is when the CRS generates a SARIF report that represents a

vulnerability it has found. The second, “SARIF assessment” is the CRS assessing a SARIF report sent to

it by the competition framework (“SARIF broadcast”).

In successive rounds, CRSs will be presented with sets of challenges. The aim of each CRS is to find and

fix vulnerabilities contained in the challenges. To place an upper bound on the number of challenges a

CRS processes concurrently, the total number of challenges for the round is spread across multiple sets.

The following is a summary of ways in which CRSs can demonstrate capabilities. Each one has a

corresponding “submission” message. All of these are described in the identified section. Each section

contains requisite definitions, a description of the submission requirements, and notes on how the

submission is evaluated. For each capability, the CRS may send a submission before the challenge

deadline. Scoring details for each are provided in Section 4: AFC Scoring Algorithm.

Table 2: Summary of Submissions

Capability Section Description

Vulnerability

Discovery

3.2 The CRS may send PoV submissions to the Competition API.

Patch Generation 3.3 The CRS may send generated patch submissions to the competition API.

SARIF Assessment 3.4 The CRS may receive zero or more SARIF reports related to active

challenge tasking via SARIF broadcasts. The CRS may score points by

assessing the SARIF’s correctness and submitting a SARIF assessment.

SARIF Generation 3.5 The CRS may generate its own SARIF reports to describe its findings.

(Not scorable, see Section 4.1.2)

AIxCC Procedures & Scoring Guide V2 Page 14 of 39

Capability Section Description

Bundling 3.6 The CRS may send challenge bundles to the competition API, detailing

explicit pairings of its findings and/or SARIF broadcasts.

3.1.1 Competition API Submission Evaluation

To balance timely response with detailed evaluation for submissions, evaluation occurs in phases:

completeness checks, automated verification, and post-round analysis and audits. Each phase generally

takes more time than the previous and is described below.

3.1.1.1 Completeness Checks

Completeness checks are performed at submission time and synchronously return a response. They are

designed to pass or fail relatively quickly and use the following logic:

● The submission is considered complete if all inputs are well-formed, required fields are provided,

and all fields pass applicable range checks. Otherwise, the submission is incomplete.

● All submissions receive a response code; complete submissions receive a tracking identifier that

can be used by the CRS to request evaluation status.

3.1.1.2 Automated Verification

These are long-running tasks that take a variable amount of time depending on the type of submission and

complexity of the challenge. Automated verification is performed only for complete submissions.

Submission status can be requested by the CRS to discover if verification is in progress or complete,

negative or positive.

3.1.1.3 Post-Round Analysis and Audits

Post-round analysis and audits are performed to verify evaluation, such as correctness of submissions.

This may include but is not limited to additional automated and human review.

3.2 Vulnerability Discovery

To score points for a discovered vulnerability, the CRS must provide a Proof of Vulnerability submission.

3.2.1 Proof of Vulnerability (PoV)

Challenges contain “challenge harnesses” that exercise challenge functionality with CRS-provided data.

To demonstrate a vulnerability discovery, CRSs will submit information sufficient for the evaluation

system to reproduce the identified vulnerability in the form of data passed to these harnesses.

3.2.1.1 Variant PoVs

The concept of a “Variant PoV” is new in AFC. A challenge vulnerability is implicitly defined by a set of

one or more PoVs that exercise that vulnerability. When a CRS submits a valid PoV, that PoV is

considered one of that CRS’s Variant PoVs for the underlying vulnerability.

AIxCC Procedures & Scoring Guide V2 Page 15 of 39

A challenge vulnerability may have any number of Variant PoVs associated with it. The set of variants is

generated post-round, determined by the deduplication methodology in Section 4.3.3, and includes PoVs

from all CRSs and competition-designed PoVs. Cross-team Variant PoVs are used to improve patch

quality assessment. More details about how these are used in scoring can be found in Section 4: AFC

Scoring.

3.2.2 Proof of Vulnerability Submission

A CRS will send submissions to the competition API. Complete submissions include the following and

will receive a tracking identifier that can be used to request status:

● Challenge identifier

● PoV challenge harness name

● PoV challenge harness build option: sanitizer (if applicable)

● PoV challenge harness build option: engine (“libfuzzer”)

● PoV challenge harness build option: architecture (“x86_64”)

● PoV binary data that represents input bytes to challenge harness

The set of valid PoV build options for any given challenge will be communicated to the CRS in the

challenge task and may differ between challenges. PoVs with non-valid build options will be rejected.

Note, for the AFC only “x86_64” architecture will be supported, and thus the CRS must supply that value

in its PoV submission. The field is included to future-proof the specification for additional architecture

support. All PoV submissions will be evaluated with the “libfuzzer” fuzzing engine.

3.2.2.1 Duplicate PoVs

For a given challenge task, a variety of PoVs may cause different crashes for the same underlying

vulnerability. In the AFC, these are often referred to as “duplicate” PoVs. The scoring system will use the

PoV deduplication methodology described in Section 4.3.3 to determine if a set of PoVs are considered

duplicates. Thus, the set of “duplicate” PoVs and the set of “variant” PoVs are equivalent.

Duplicate PoV submissions will not negatively affect a team’s accuracy, as previous rulings stated.

However, a CRS will not score additional points for duplicate PoV submissions. Further details on

scoring duplicate vulnerabilities can be found in Section 4: AFC Scoring.

3.2.3 Proof of Vulnerability Evaluation

PoVs must reliably reproduce the crash. If the submitted PoV cannot be confirmed by these means, the

submission will be rejected. Unlike in the AIxCC Semifinal Competition (ASC), a scorable crash does not

need to be explicitly caused by a sanitizer. Rejected submissions will negatively impact the team score

(see Scoring Algorithm). Further details on PoV scoring can be seen in Section 4: AFC Scoring.

To evaluate PoV submissions, the competition infrastructure will attempt to reproduce the PoV using the

commands in the TOAST specification described in Section 2.3.1.

PoVs must adhere to the following rule:

1. They must demonstrate a problem in the challenge source code, not simply a problem in the

harness.

AIxCC Procedures & Scoring Guide V2 Page 16 of 39

PoVs which are reproducible but fail to adhere to the above rules will not score but will not negatively

affect a team’s accuracy. As with all submissions, PoVs are subject to post-round review.

3.3 Patching

A CRS may generate patches independent of its PoVs and SARIF broadcast assessments. Patches are

modifications to the source code of the challenge that removes the vulnerability while preserving the

software’s intended functionality. 

The patches that the CRS creates to fix vulnerabilities are referred to as generated patches.

3.3.1 Generated Patches

A generated patch submission must include source code modifications that only affect C or Java source

code, depending on the challenge language, and must be submitted in unified diff6 format. The patch is

applied against the specified challenge source code for validation. Individual patches will be validated

independently against the original challenge. Patches will not be validated in conjunction with any other

submitted patch.

Unlike in the ASC, patches do not require ties to PoVs. Instead, patches may be submitted on their own,

and may receive points without PoVs, detailed in later sections.

3.3.2 Generated Patch Submission

A CRS will send submissions to the competition API. Complete submissions include the following and

will receive a tracking identifier that can be used to request status:

● Challenge identifier

● Patch content as a unified diff

3.3.2.1 Duplicate Patches

For a given challenge task, a variety of patches may functionally remediate the same set of challenge

vulnerabilities. These are often referred to as “duplicate patches”. The scoring system processes all CRS

patch submissions for a challenge to ultimately determine which patches should be used for scoring. Since

patches may remediate one or more challenge vulnerabilities, the patch selection methodology is non-

trivial, and thus does not directly use the term “duplicate patch”.

Generally, however, a CRS will not score additional points for duplicate patch submissions. And non-

scoring patch submissions (such as duplicates) will have a negative effect on a team’s challenge accuracy.

Further details on scoring patches and patch accuracy can be found in Section 4: AFC Scoring.

3.3.3 Generated Patch Evaluation

Patch evaluation is a multi-phase asynchronous process. During evaluation, a CRS can obtain submission

status using the competition API. The basic steps are:

6 https://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html

AIxCC Procedures & Scoring Guide V2 Page 17 of 39

1. The patch is applied to the challenge source code. Note, for a “delta-scan” challenge, the “diff”

portion of the challenge is applied to the challenge’s source code base, then the patch is applied to

the result. For a “full-scan” challenge, the patch is applied to the challenge’s source code base.

2. After applying the patch, the challenge source and applicable harness are built.

3. To verify that program functionality is preserved, all available functional tests are executed.

Patches that pass the above validation tests are then scored after the challenge deadline ends. Unlike in the

ASC, patches are not scored against a singular PoV. Instead, patches will be scored on their ability to

remediate vulnerabilities that were discovered by all competing CRSs and the competition creators.

Further details on patch scoring can be found in Section 4: AFC Scoring.

Generated Patches must adhere to the following rules:

● They must not modify source code outside of the target language for the project.

● They must not remediate the vulnerability via modifications to the harness.

● They must not pass functional tests via modifications to the functional test source code.

All patches which fail to adhere to the above rules will not score and will negatively affect a team’s

accuracy. After the round, patches will go through additional reviews to assess quality and integrity.

3.4 SARIF Assessment

During round execution, the competition framework may send SARIF broadcasts (reports). Each report

describes a potential vulnerability in an active challenge (delta or full). The reports will not contain PoV

information, and they are not guaranteed to be accurate in their description of a real problem in the

challenge code.

There are two ways for a CRS to score from a SARIF broadcast:

1. Correctly assess the SARIF (See Section 3.4.1 SARIF Assessment Criteria)

2. Broadcast IDs from the report may be included in a Bundle Submission (see Section 3.6.1)

3.4.1 SARIF Assessment Criteria

A SARIF report is “correct” if the problem it describes is in fact a problem in the source code of the

associated task. The content of the SARIF report may vary, but all fields included in the SARIF report

should be considered when assessing as correct or incorrect.

For example, suppose a SARIF report asserts that source code in a specified location is vulnerable to

“Buffer Overflow” (CWE-120). If that area of source code is vulnerable to a buffer overflow, the report

should be assessed as “correct”; otherwise, it should be assessed as “incorrect”. The assessment should be

focused solely on the specified vulnerability in the specified source code location.

SARIF report contents and additional examples can be found in the API Details and Documentation.

Due to the nature of the challenges, correct SARIF reports will describe harness-reachable, sanitizer-

triggered crashes.

AIxCC Procedures & Scoring Guide V2 Page 18 of 39

3.4.2 SARIF Assessment Submission

A CRS will send submissions to the competition API. Complete submissions include the following:

● SARIF identifier - included as part of the endpoint URL path

● Assessment - correct or incorrect

● Description - plain text that justifies the given assessment

For the SARIF Assessment submission to be accepted, it must have a non-empty description.

3.4.3 SARIF Assessment Evaluation

The methodology for SARIF assessment evaluation is detailed in Section 4: AFC Scoring.

3.5 SARIF Generation

In addition to the above submissions, a CRS may generate a static description of the vulnerability in

SARIF format. This generated SARIF submission may be created by the CRS to demonstrate its

understanding of the vulnerability in a static way, apart from the PoV or patch. This generated SARIF

report will not affect scoring but may be associated with the PoVs and patches (see Section 4: Scoring

Algorithm for more details).

3.5.1 SARIF Report Submission

The competition has one additional constraint compared to the public SARIF format:

● CRS-generated SARIFs must contain rules, and all results must specify a rule ID.

3.6 Bundling

3.6.1 Bundle Submission

CRSs may indicate that other submissions are related by adding them to a bundle. For example, a CRS

can indicate that a patch they generated fixes a vulnerability they found by submitting a bundle containing

both.

CRSs may add and remove parts of a bundle after submission. CRSs may also delete bundles.

Bundles contain the following fields. All fields are optional, but a bundle should contain at least two to be

meaningful.

● A reference to a previously submitted PoV

● A reference to a previously submitted patch

● A reference to a previously submitted SARIF report

● A reference to a broadcast SARIF report

● A plaintext description containing any additional information to explain the CRS’s findings

AIxCC Procedures & Scoring Guide V2 Page 19 of 39

3.7 CRS Development Constraints

3.7.1 Azure Subscription

Teams will be provided with an Azure subscription that can be used for development and a unique

subscription to be used during each round execution. Resources do not need to be duplicated in each

subscription and can be moved between the subscriptions, if desired, as long as they exist in the current

round subscription by the round open date in a healthy state.

3.7.1.1 Azure Development Budget

For development, teams are allotted $100,000 to be used during development for the duration of the AFC.

See the Round Execution Budgets and Limits section for round execution budgets.

3.7.2 GitHub Repositories

AIxCC organizers will provide competitors with private GitHub repositories for CRS submissions. All

versions of CRSs used during round execution must exist in the provided repository. For AFC, the AIxCC

organizers will be using a GitHub organization instead of GitHub enterprise, so competitors will be

required to submit the public GitHub usernames of their team members.

The AIxCC organizers will provide GitHub workflows and/or actions for continuous evaluation of

competitor CRS repositories to ensure the code and interfaces conform to the published specifications.

The AIxCC organizers will use the #announcements channel in the “AIxCC Finalists” Slack channel to

notify competitors of any version changes related to the evaluation actions.

3.7.2.1 LICENSE File

To comply with the AIxCC Open Source Requirement as specified in Section 3.4 of the AIxCC Rules, all
teams must include a license file in the top level of their CRS GitHub repository. An example license is
provided in Appendix B and is also available in the API Details and Documentation. Name the file
“LICENSE” and place it in the root CRS source code repository.

3.7.3 Custom Models

For AFC, custom models are not prohibited. Models may be trained offline but must be hosted within

Azure compute infrastructure.

Custom models that are part of a competitor’s CRS solution must be pre-approved no less than seven

(7) days prior to round open and must be reproducible by AIxCC Organizers. Model architectures,

weights, and other configuration data must be released according to the open source requirement.

Training data is not required to be open sourced but must be made available to AIxCC Organizers. Open

sourced training data is highly encouraged.

All the following must be provided for model reproducibility:

1. License compliance and attribution - As required by the source, all licenses and attribution must

be described, provided (if applicable), and included in the CRS source submission. This includes,

but is not limited to, any required software or data used to reproduce the model.

AIxCC Procedures & Scoring Guide V2 Page 20 of 39

2. Hardware and/or compute requirements - A description of the compute resources required to

reproduce the model must be provided to organizers.

3. Environment - Instructions and/or scripts to set up the environment, run data processing, train,

and evaluate the model, along with any expected outputs or checkpoints.

4. Data processing – Competitors must provide a script that handles all data pre-processing steps

(e.g., cleaning, tokenization). The script should have clear, reproducible steps and be executable

without additional modifications.

5. Training data - All source data must be accessible to AIxCC Organizers. Data is accessible if one

or more of the following is true:

● The data is included in the CRS submission; OR

● The data source is fully documented, and the data is retrievable by organizers (e.g.,

URLs, APIs, or datasets). Version numbers or timestamps must be included if the data or

access methods change over time; OR

● A script is included in the CRS source submission to fetch the data outside the

competition environment.

3.7.3.1 Custom Model License
As stated in the AIxCC Rules document, section 3.4, “The open-source requirement applies to all source

code and artifacts, including, but not limited to, models, for the Cyber Reasoning System (CRS) generated

for, and used as an entry in AIxCC.”

If using a custom model, a license form that allows for others to use/reproduce the model must be chosen.

One example is the OpenMDW license (https://openmdw.ai/).

3.8 Framework APIs and Specifications

AIxCC Organizers will implement the competition API to enable a CRS to send all submissions and to

request status on submissions.

Likewise, the CRS must implement the CRS API to enable CRS receipt of challenges and broadcast

vulnerabilities. The CRS API must also include a method for obtaining health and metrics information.

All endpoints for the CRS API and competition API must have a uniform implementation:

● Endpoints will be HTTP-based with JavaScript Object Notation (JSON) inputs, JSON outputs,

and return HTTP status codes

● All endpoints must support key/token authentication using HTTP Auth

● All endpoints must use HTTPS signed by a public Certificate Authority

AIxCC Procedures & Scoring Guide V2 Page 21 of 39

3.8.1 Telemetry Specification

To address requirements for analysis of activities and metrics, AFC will use OpenTelemetry (OTel).

OpenTelemetry is an observability framework and toolkit focused on the generation, collection,

management, and export of metrics, traces, and logs.7,8

For AFC, CRSs must comply with the telemetry specifications contained in the API Details and

Documentation which includes requirements and guidelines for using OpenTelemetry-compatible

libraries for tracking detailed LLM usage and other metrics.

Teams are encouraged to go beyond the minimally required and optional items in the telemetry
specification. Leveraging OTel can be used to gain insights into CRS behavior during development to
inform improvements between rounds, help with competition visualizations, and prepare for post-
competition artifact publication

Teams are encouraged to forward unstructured logs but include the required metadata which will be
captured in the specification.

CRS-generated telemetry data will be made available to respective teams after each round. Providing
telemetry and logs will help teams more quickly be able to adapt to this feedback as it will be made
available prior to restoring access to a team's Azure subscription.

3.9 CRS Solution Deadlines

At round open, a CRS must be running and in a healthy state. The status endpoint information must

correlate with the tagged release in the competitor’s GitHub repository.

3.10 Round Execution Constraints

3.10.1 CRS Provisioning and Startup

Prior to the round open:

● Competitors must provision their CRS within an Azure subscription using Terraform. Use of a

Makefile is permitted.

● After the “terraform apply” or “make up” command completes, the CRS must be fully functional

and ready to receive tasks. README documentation shall be made available to AIxCC

organizers of any additional setup/environment variable requirements that are needed for

purposes of reproducing the CRS for validation purposes.

● A successful health check signals that the CRS is ready to receive tasks.

Please refer to the API Details and Documentation for examples.

3.10.2 Post Round

For each round, access to all teams’ round-specific Azure subscriptions will be revoked at the round open

date/time. After the round is completed and scored, AIxCC organizers will provide API interactions, and

the telemetry data collected, to each team. This data or derivatives are NOT to be shared in any form with

7 https://opentelemetry.io/docs
8 https://opentelemetry.io/docs/concepts/observability-primer/

AIxCC Procedures & Scoring Guide V2 Page 22 of 39

other teams or be made public until after the conclusion of the competition and the full and final

competition results are announced publicly by DARPA. Doing so may be grounds for disqualification.

Within seven days of the close of a round, access to Azure subscriptions will be restored so that teams can

collect data, as needed. This delay is to encourage teams to use the provided telemetry and log forwarding

mechanisms as their primary means of feedback as they will receive access to this data first.

3.10.3 Round Execution Budgets and Limits

During round execution, monetary budgets apply to both Azure subscription and commercial LLM

utilization. Each budget is specific to the round and includes two items:

● Azure Subscription Budget - Azure subscriptions are supplied by and paid for by AIxCC

Organizers.

● LLM Utilization Budget - Credentials (API Keys) are supplied by the AIxCC Organizers.

If either round budget is exceeded during round execution:

● Any competition scorable submission received by the competition API after budget exhaustion

will not be reflected in the final score.

Organizer-provided round budgets will vary based on the volume and types of challenges expected in the

round.

● Organizers will provide the round budgets for Azure subscription and LLM utilization for each

round as part of the Round Details (see Section 1.4.1).

● Competitors should use this information to scale and allocate resources accordingly.

3.10.3.1 Azure and LLM Budget Items

For the Azure subscription budget, budget items include any costs incurred through the round-specific

Azure subscription.

For the LLM utilization budget, budget items include any costs incurred accessing AIxCC organizer-

approved commercially available LLM services. Utilization is calculated based on telemetry provided by

CRSs and collected by AIxCC organizers (see Section 3.8.1).

3.10.3.2 LLM Round Execution Query Capacities

LLM rate limits are set by providers on a per-model basis.

Model pricing during the competition will match the providers' publicly listed prices. Check each

provider's pricing page for the most current information.

3.10.4 Large Language Model API Telemetry

Capturing LLM usage (e.g., inputs, outputs, durations, counts, etc.) is essential for both round execution

and post AFC research and analysis. The AFC leverages OpenTelemetry (OTel) to capture LLM usage.

CRSs must conform to the telemetry specifications in Section 3.8.1 for model access for both public and

custom models (as applicable).

AIxCC Procedures & Scoring Guide V2 Page 23 of 39

3.10.5 Networking

During round execution, CRSs have VPN access to the competition API and vice versa.

The CRS will have restricted access to the internet during round execution. Teams may not use third-

party compute resources or non-public APIs unless the resource is on an approved list curated by AIxCC

organizers.

Access is limited to the following:

● The competition API

● AIxCC organizer-approved commercial LLM access

● Resources needed to build and run harnesses contained within challenges

3.11 CRS Disqualification Guidelines

To ensure that a fair and productive competition is conducted, the AIxCC Organizers reserve the right to

introduce new competition rules at any time. AFC results and submissions will be audited by the AIxCC

Organizers, ensuring that teams comply with both the explicitly stated restrictions and the underlying

ethos of the competition.

To validate AIxCC results, the infrastructure team will deploy various sensors and create auditable

artifacts throughout the project's lifecycle.

The examples below constitute approaches, activities, and methods that will result in disqualification

from the AFC and are applicable both before and after the AFC begins. Should a competition team have

concerns that their strategy may be viewed as contrary to the competition's ethos or received unfavorably,

they are encouraged to contact the AIxCC Organizers for feedback. Likewise, teams are encouraged to

contact the AIxCC Organizers if they suspect that an external actor or another team is interfering with

their AIxCC-related work.

The guidelines that follow are meant to be informative in nature. The document governing competition

disqualification is the AIxCC Rules document.

3.11.1 No Superman Defenses

Attempts to resolve vulnerabilities with unrealistic patches that hide an issue will be considered against

the spirit of the competition. For example, resolving a double-free vulnerability by eliminating all calls to

free is not a valid or reasonable solution.

3.11.2 No Malicious Patches

The patches submitted during competition are meant to fix vulnerabilities while preserving functionality.

Any patches that introduce new functionality or attempt to score points without finding and fixing

vulnerabilities will be considered malicious. This includes patching techniques that cause the challenge to

avoid sanitizer detection. For Java, a generated patch must not add/modify a Security Manager to mitigate

the vulnerability. Other violations would include forking a new process to avoid sanitizer detection or to

isolate the vulnerability.

AIxCC Procedures & Scoring Guide V2 Page 24 of 39

3.11.3 No Phoning Home

Any attempts to circumvent the network restrictions described in the CRS Specification (see Section 1.7
and Section 3) will be considered malicious.

3.11.4 No Gaming the Scoring Algorithm

The AFC Scoring Algorithm is intended to be robust and motivating for specific research goals; however,

the AIxCC Organizers cannot rule out loopholes in the design or implementation. It will be against the

spirit of the competition if the AIxCC Organizers discover that a team sought to exploit the scoring

algorithm without addressing vulnerabilities.

3.11.5 No Hacking the Infrastructure

Manipulating, tampering, or subverting the AFC infrastructure (before or during the competition) will

result in disqualification of the offending team.

3.11.6 No Misuse of Collaborator Credits and Resources

AIxCC Collaborators are generously providing their resources to support this effort. Competitors must

comply with Collaborators' applicable terms of service. Use of these resources or credits for activities

unrelated to AIxCC is prohibited. Use or attempts to use others’ resources, including other competitors’

resources, is also prohibited. Misuse may lead to disqualification from AIxCC and/or penalties under the

terms and conditions of other vendors and services.

3.11.7 No Obfuscation Tactics in Custom Models

Custom trained/tuned models are permitted as specified in the CRS Specification (see Section 1.7 and

Section 3); however, model obfuscation tactics of any form could lead to disqualification. Custom models

that do not conform to open source or reproducibility requirements could lead to disqualification.

3.11.8 No Pre-baking Models

Generating models that resemble a lookup table of challenge basis or challenge repositories to

vulnerabilities and then directly attempting to brute force submissions would be considered against the

spirit of the competition.

3.11.9 No Gaming the Challenge Code Basis

Any attempt to distinguish between the real-world public basis for a challenge and the challenge source

code to look for authorship patterns or indicators that are unrelated to the functionality or security

elements of the code changes is against the spirit of the competition and will likely result in

disqualification. This includes using code-authorship detection techniques to identify code changes that

were authored by AIxCC Organizers to aid with vulnerability discovery; and/or comparing the challenge

source code with our own copy of the challenge source code to aid with vulnerability discovery.

AIxCC Procedures & Scoring Guide V2 Page 25 of 39

4 AFC Scoring

4.1 Scoring Design Objectives

The scoring algorithm for the AFC described in this document is designed to measure, incentivize, and

reward competing CRSs for their potential real-world value and positive impact on open source security.

In this competition, we aim to incentivize CRS impact for the following stakeholders:

1. Open source maintainers

2. Open source contributors

Because of this, the scoring algorithm described in this document is designed to meet the following

objectives:

1. Encourage and reward the key areas of excellence we want to see from a CRS.

2. Encourage and reward additional areas of exceptional quality of a CRS.

We believe that by achieving these scoring objectives, we can use the scoring algorithm to direct the

competition and competitors to have the greatest impact on open source security.

4.1.1 Areas of Excellence

The following areas of excellence, if demonstrated by a CRS, will result in direct score value, affecting

the team’s final standings for the competition and winnings. These areas of excellence are designed to

reflect real-world value that a CRS may provide, rather than competition-specific achievements.

1. Size and Variety of Software: A CRS will be tasked with numerous challenges across many

software repositories of varying size, complexity, and behavior.

2. Multi-language Applicability: A CRS will be tasked with challenges in both C and Java

projects.

3. Analysis Scope Flexibility: A CRS will be tasked with both full-scan and delta-scan challenges

and will be rewarded by finding vulnerabilities in a limited scope of software.

4. Vulnerability Discovery: A CRS will be incentivized to discover vulnerabilities and submit

PoVs.

5. Quality Patch Generation: A CRS will be incentivized to generate viable patches that do not

break functionality. Patches may be submitted for vulnerabilities that the CRS has or has not

submitted PoVs for.

6. Proof and Patch Correlation: While discovery and patching can be performed independently, a

CRS will be incentivized to perform both, explicitly stating the correlation between patch and

PoV.

7. Submission Accuracy: A CRS will be disincentivized to submit incorrect or duplicate

submissions in areas where it would be considered negative value to users.

AIxCC Procedures & Scoring Guide V2 Page 26 of 39

8. SARIF Assessment: A CRS will be asked to evaluate a SARIF broadcast to determine its

correctness as an initial step toward reasoning over SARIF broadcasts in the real-world.

4.2 Scoring Algorithm

The scoring algorithm is broken down into several sub-components. This section details the high-level

overview of each of the scoring algorithm components. Further details on how exactly the scores are

calculated can be found in Section 4.3: Further Details.

4.2.1 Team Score

The team score represents the overall performance of a participating team in the AFC. The team score

will be an aggregate of the challenge scores from the final scored round, and will be the determining

factor for team ranking, standings, and winners.

𝑇𝑒𝑎𝑚 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 𝑆𝑐𝑜𝑟𝑒𝑠

4.2.2 Challenge Score

The challenge score represents the performance of a CRS on one individual challenge. The challenge

score is a weighted sum of CRS performance in vulnerability discovery, program repair, SARIF broadcast

assessment, bundling, and accuracy across all vulnerabilities in the challenge.

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 𝑆𝑐𝑜𝑟𝑒 = 𝐴𝑀 ∗ (𝑉𝐷𝑆 + 𝑃𝑅𝑆 + 𝑆𝐴𝑆 + 𝐵𝐷𝐿)

The challenge score is based on five key scoring metrics, defined in the following sections:

● Accuracy Multiplier (AM)

● Vulnerability Discovery Score (VDS)

● Program Repair Score (PRS)

● SARIF Assessment Score (SAS)

● Bundle Score (BDL)

The challenge score will be calculated the same, regardless of the challenge type: full-scan or delta-scan,

but the scorable elements within a challenge may differ depending on the challenge type.

4.2.2.1 Accuracy Multiplier

The Accuracy Multiplier (AM) measures CRS accuracy within an individual challenge. A CRS is

responsible for producing accurate and quality submissions to the game infrastructure and thus will be

negatively impacted by inaccurate and duplicate submissions.

AIxCC Procedures & Scoring Guide V2 Page 27 of 39

The intent of the AM is two-fold: First, to represent and incentivize CRS accuracy. Second, to counter

any potential point value a CRS may gain from its inaccurate submissions, disincentivizing any brute-

force or oracle approaches to the competition.

Because of the variable number of scorable events for any given challenge, the accuracy multiplier is

based on a ratio of accurate submissions vs. cumulative (accurate and inaccurate) submissions within a

challenge. Section 4.3.1 enumerates which submissions increase the accurate count, increase the

inaccurate count, or have no effect on either.

The AM will be computed as follows:

𝐴𝑀 = 1 − (1 − 𝑟)4

Where r is a measured ratio of accurate submissions over the sum of accurate and inaccurate submissions,

computed as follows:

𝑟 =
𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒

𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 + 𝑠𝑢𝑏𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒

The resulting AM value in relationship to the accuracy ratio is shown in the following figure.

Figure 1: Accuracy Multiplier charted over accuracy ratio, r.

See Section 4.3.1: Accuracy Multiplier Calculations for further details and examples on how the accurate

and inaccurate submission counts are calculated.

AIxCC Procedures & Scoring Guide V2 Page 28 of 39

4.2.2.2 Vulnerability Discovery Score

The Vulnerability Discovery Score (VDS) represents the performance of a CRS in discovering and

proving vulnerabilities for a given challenge. The VDS is calculated as the sum of all scoring PoV values

for the challenge.

𝑉𝐷𝑆 = ∑ 𝑣𝑎𝑙𝑢𝑒𝑃𝑜𝑉 , 𝑓𝑜𝑟 𝑃𝑜𝑉 ∈ 𝑆𝑐𝑜𝑟𝑖𝑛𝑔 𝑃𝑜𝑉𝑠

where the set of “Scoring PoVs” is determined by the scoring selection criteria defined at the end of this

section. PoV values are calculated as follows:

valuePoV =

 2 × 𝜏PoV , Submitted PoV does cause reproducible crash

 0 , Submitted PoV does not cause reproducible crash

where 𝜏PoV is the PoV’s time multiplier. The available point score for each PoV decreases over the course

of the challenge window, to a minimum of 50%. This is enforced by the time multiplier, 𝛕.

𝜏𝑃𝑜𝑉 = 0.5 +
𝑡𝑖𝑚𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

2 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑡𝑖𝑚𝑒

PoV submissions will go through a deduplication process to ensure a CRS only scores one PoV per

unique vulnerability discovered (see Section 4.3.3 for details). The set of scoring PoVs is composed of all

the last-submitted variant PoVs for all unique vulnerabilities discovered by the CRS, for that challenge.

Another way to consider this: For any set of PoV submissions that are considered duplicates of each

other, only the last submission is selected as a scoring PoV.

Reproducible, non-scoring PoVs will not earn points directly, but may be used in bundles. They will also

be used in patch evaluation along with the other variants and will not affect the Accuracy Multiplier. Non-

reproducible or erroneous PoVs will still negatively affect the Accuracy Multiplier (see Section 4.3.1 for

details).

4.2.2.3 Program Repair Score

The Program Repair Score (PRS) represents the performance of a CRS in generating patches for a given

challenge. The score is calculated as the sum of all scoring patch values for the challenge.

𝑃𝑅𝑆 = ∑ 𝑣𝑎𝑙𝑢𝑒𝑝𝑎𝑡𝑐ℎ , 𝑓𝑜𝑟 𝑝𝑎𝑡𝑐ℎ ∈ 𝑆𝑐𝑜𝑟𝑖𝑛𝑔 𝑃𝑎𝑡𝑐ℎ𝑒

AIxCC Procedures & Scoring Guide V2 Page 29 of 39

where the set of “Scoring Patches” is determined by the scoring selection criteria defined at the end of this

section. Patches must adhere to a set of rules defined in Section 3.3.3 above. Patch values are calculated

as follows:

valuepatch =

 6 × 𝜏patch , Submitted patch adheres to the rules, remediates one
or
 more Challenge Vulns for this challenge, AND passes
 all functionality tests.

 0 , Submitted patch does not remediate any known
 Challenge Vulns OR fails to apply, build, or pass
 functionality tests, or fails to adhere to the rules.

Where 𝜏patch is the patch’s time multiplier. The available point score for each patch decreases over the

course of the challenge window, to a minimum of 50%. This is determined by the time multiplier, 𝛕.

𝜏𝑝𝑎𝑡𝑐ℎ = 0.5 +
𝑡𝑖𝑚𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

2 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑡𝑖𝑚𝑒

Patch submissions will go through a selection process to determine which of the CRS-submitted patches

should be used for scoring. This selection process is non-trivial due to the complex and subjective nature

of selecting between patches that may remediate multiple overlapping vulnerabilities. The selection

process is outlined in detail in Section 4.3.4 and should be understood thoroughly.

Patches not selected for scoring will not earn points directly but may be used in bundles. These patches

will negatively affect the Accuracy Multiplier: see Section 4.3.1 for details.

4.2.2.4 SARIF Assessment Score

The SARIF Assessment Score (SAS) represents the ability of a CRS to accurately assess a SARIF

broadcast against the challenge codebase.

𝑆𝐴𝑆 = ∑ 𝑣𝑎𝑙𝑢𝑒𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 , 𝑓𝑜𝑟 𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 ∈ 𝑆𝑐𝑜𝑟𝑖𝑛𝑔 𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡𝑠

where the set of “Scoring Assessments” is determined by the scoring selection criteria defined at the end

of this section. Assessment values are calculated as follows:

 1 × 𝜏assessment , Assessment correctly identifies report as correct or
 incorrect.

AIxCC Procedures & Scoring Guide V2 Page 30 of 39

valueassessment = 0 , Assessment incorrectly identifies report
 correctness.

where 𝜏assessment is the assessment’s time multiplier. The available point score for each assessment

decreases over the remainder of the challenge window, to a minimum of 50%. This is determined by the

time multiplier, 𝛕.

𝜏𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 = 0.5 +
𝑡𝑖𝑚𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

2 ∗ 𝑡𝑖𝑚𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑤ℎ𝑒𝑛 𝑆𝐴𝑅𝐼𝐹 𝑤𝑎𝑠 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡

SARIF Assessment Scoring Selection Criteria

Due to the binary nature of the assessment, only one SARIF Assessment will be evaluated per broadcast.

The last assessment submission will be used for scoring. Assessments prior to the last will negatively

affect scoring. See Section 4.3.1 for details.

4.2.2.5 Bundle Score

The Bundle Score (BDL) represents the CRS’s ability to pair PoV, patch, and/or SARIF broadcast

Universally Unique Identifiers (UUIDs) together. This score is used to incentivize a CRS to reason over

how its findings and broadcasts are related and correctly associate them together.

In addition to PoVs, patches, and broadcast UUIDs, a CRS may additionally include a CRS-generated

SARIF report UUID, and/or a plaintext description detailing any additional information to explain its

reasoning or findings. These fields will not have any direct effect on the Bundle Score but will be used

when calculating the unscored CRS excellence metrics (see Section 4.2.3).

The Bundle Score is calculated as the sum of select bundle scores that remain at the end of the challenge

window.

𝐵𝐷𝐿 = ∑ 𝑠𝑐𝑜𝑟𝑒𝑏𝑢𝑛𝑑𝑙𝑒 , 𝑓𝑜𝑟 𝑏𝑢𝑛𝑑𝑙𝑒 ∈ 𝑆𝑐𝑜𝑟𝑖𝑛𝑔 𝐵𝑢𝑛𝑑𝑙𝑒𝑠

where the set of “Scoring Bundles” is determined by the scoring selection criteria defined at the end of

this section. The score for each individual bundle depends on the contents of the bundle, detailed below.

For bundles that include only a single item from the set: {PoV, patch, Broadcast UUID}, the bundle score

will be zero and that bundle will not be included in the set of scoring bundles. For example, a PoV

bundled with a CRS-generated SARIF and plaintext-description will be collected and used for excellence

metrics but will not earn additional points.

For bundles that include more than one from the following set: {PoV, patch, broadcast UUID}, the bundle

score is calculated as follows:

scorebundle = valuebundle , The bundle contains all correct pairings

AIxCC Procedures & Scoring Guide V2 Page 31 of 39

 –valuebundle , The bundle contains incorrect pairings

The bundle score acts as a higher risk or reward than simply generating PoVs and patches, as incorrect

bundling will negatively affect the score, however, a CRS may gain significant point advantage from

successful bundling. The value for non-zero bundles is calculated as follows:

𝑣𝑎𝑙𝑢𝑒𝑏𝑢𝑛𝑑𝑙𝑒 = 0.5 ∗ (𝑣𝑎𝑙𝑢𝑒𝑃𝑜𝑉 + 𝑣𝑎𝑙𝑢𝑒𝑝𝑎𝑡𝑐ℎ) + 𝑏, if PoV and Patch are bundled.

 𝑏, if PoV and Patch are not both supplied.

where the PoV and patch values are the values that the respective PoV and patch UUIDS receive, as

detailed in previous sections. If a PoV or patch UUIDs are not included in the bundle, their PoV and patch

values in the above formula will be set to zero, respectively.

The broadcast pairing value, b, is calculated as follows:

 0, No Broadcast UUID included in bundle, or the bundle
 contains incorrect pairings.

b = 1, The bundle contains correct pairings of Broadcast UUID
 and PoV, but no Patch.

 2, The bundle contains correct pairings of Broadcast UUID
 and Patch, but no PoV.

 3, The bundle contains correct pairings of Broadcast UUID,
 PoV, and Patch.

The requirements for correct bundle pairings are defined as follows:

● For a PoV & patch pairing: the patch must remediate the PoV crash it is paired with.

● For a PoV & broadcast UUID pairing: the PoV must crash the vulnerability defined in the SARIF

broadcast. Specifically, the CRS-supplied PoV and withheld PoV(s) associated with the SARIF

broadcast must exercise the same vulnerability (see Section 4.3.3).

● For a patch & broadcast UUID pairing: the patch must fix the problem defined in the SARIF

broadcast. Specifically, the patch must remediate the challenge vulnerability associated with the

withheld PoV(s) associated with the SARIF broadcast.

● For a PoV, patch, and broadcast UUID pairing all the above must be true.

AIxCC Procedures & Scoring Guide V2 Page 32 of 39

The set of “Scoring Bundles” includes a maximum of one bundle per challenge vulnerability. Bundles are

associated with their target challenge vulnerabilities by their PoV and/or their SARIF Broadcast

vulnerability associations. Any bundles that are deleted via the competition API will not be considered for

selection. For the remaining bundles at the end of a challenge deadline, the last-submitted bundle per

challenge vulnerability is selected for scoring, with a maximum of one bundle per patch UUID.

4.2.3 Non-Scoring Excellence Recognition

There are highly exceptional characteristics that a CRS may exhibit, however scoring those abilities is

subjective or otherwise beyond the focus of the AFC. To highlight exceptional capabilities, AIxCC

Organizers are developing metrics that will result in achievements, accolades, and other forms of

recognition, but in no way affect final scores.

Excellence metrics being considered include capabilities such as the ability to produce patches that have

minimal performance impact on the running software; and the ability of a CRS to effectively and rapidly

respond to the various types of tasking while making efficient use of its resources while still retaining a

high degree of effectiveness and accuracy. As they are finalized, details will be communicated to

competitors.

4.3 Further Details

These sections go into further detail about the rationales and approaches of the scoring algorithm

components.

4.3.1 Accuracy Multiplier Calculations

The Accuracy Multiplier (AM) is calculated based on two metrics: an accurate submission count and an

inaccurate submission count. The following details what exactly affects those two counts, and what does

not.

The following submissions will increase the accurate submission count:

● Non-duplicate, scoring PoV submissions that demonstrate reproducible crashes.

● Patch submissions chosen to score by the patch scoring selection process (see Section 4.2.2.3 and

further detail in Section 4.3.4).

● Scoring SARIF assessment submissions (the last-submitted assessment, if it is correct).

● Non-duplicate, correct scoring bundle submissions.

The following submissions will increase the inaccurate submission count:

● PoV submissions that do not demonstrate reproducible crashes.

● Patch submissions that fail to apply to the codebase or result in harness build failures.

● Patch submissions that fail to remediate at least one challenge vulnerability.

● Patch submissions that otherwise are not chosen to score by the patch scoring selection process

(see Section 4.2.2.3 and further detail in Section 4.3.4).

AIxCC Procedures & Scoring Guide V2 Page 33 of 39

● Non-scoring SARIF assessment submissions (incorrect, or non-last-submitted)

● Bundle submissions that are deemed incorrect or duplicate after the close of a challenge.

The following submissions will not affect either accurate or inaccurate submission counts:

● Duplicate, reproducible PoV submissions.

● Patches that apply and build but fail functionality testing. In the real world, it is normal to iterate

on patches based on continuous integration (CI) pass/fail status within a pull request (PR). Even

further, because a CRS may not have the direct ability to run functionality testing on its own, re-

submitting an updated patch based on functionality test information is acceptable.

● Server-side erroneous handling of submissions. Specifically, any time it is suggested that a CRS

should resubmit will not affect the inaccurate submission count (see competition API for details).

● Submissions that contain schema mismatch. Although they add noise, mismatched schema

submissions cannot be used to gain value for a CRS and thus will not affect inaccurate

submission count.

4.3.2 PoV Crash Evaluation Methodologies

The AFC will incorporate state of the art crash evaluation methodologies to assess the score of submitted

PoVs. These methodologies are in development and will be made available to competitors in advance of

the competition for usage and review.

4.3.3 Deduplication Methodologies

The AFC will incorporate state of the art crash deduplication methodologies to refine and uniquify the set

of PoVs submitted by both CRSs and challenge development. Two PoVs are considered “duplicates” if it

is determined that they exercise the same underlying vulnerability. These methodologies will be made

available to competitors in advance of the competition for review9.

PoV deduplication is a multi-part process that incorporates both crash-based deduplication and designed-

patch deduplication, along with other deduplication methodologies. The full methodology is documented

and shared on github9.

4.3.4 Patch Scoring Extended

In the AFC, patches are evaluated after the challenge deadline has passed. As required for all

submissions, patches must be submitted before the challenge deadline to be evaluated. Unlike ASC, in

which patches were scored on individual PoVs, in the AFC, patches are scored based on their ability to

remediate known challenge vulnerabilities, which may involve testing against one or more variant PoVs

for that known vulnerability.

For a patch to remediate a known vulnerability, it must remediate all crashes caused by all variant PoVs

collected for that given vulnerability. This includes all variant PoVs submitted from all CRSs and

includes all PoVs created by the challenge authors for the given vulnerability, for the given challenge.

9 See https://github.com/aixcc-finals/example-crs-architecture for shared scripts and methodologies.

https://github.com/aixcc-finals/example-crs-architecture

AIxCC Procedures & Scoring Guide V2 Page 34 of 39

The set of variant PoVs for a challenge vulnerability is defined by the PoV deduplication methodology

previously described in Section 4.3.3.

The concept of Variant PoVs adds an element of CRS consensus to the AFC that helps improve and

ensure patch quality. The following table helps explain this concept of patch scoring. Note, all the

information in the following table is assumed to be for a singular challenge task.

Table 3: Variant PoVs for vulnerabilities from various sources.

In the above example, seven PoVs were submitted by four teams, and three PoVs were from challenge

authors. The resulting vulnerability-to-variant mapping is shown on the table to the right. For a patch to

successfully remediate Vuln-2, it must resolve all crashes from PoVs A-2 and CA-2.

4.3.5 Scoring Patch Selection Process

After a challenge task has ended, a CRS’s patch submissions for the challenge will go through a patch

selection process to determine which will be used for scoring.

A patch selection process is necessary due to the complexities added by patches being able to remediate

multiple challenge vulnerabilities at a time. This process resolves several issues that arise when a CRS

submits several patches which remediate different overlapping subsets of challenge vulnerabilities.

The purpose of this patch selection process is three-fold:

1. To align patch scoring with real-world value, not simply competition strategy.

Challenge
Vulnerability

Variant PoVs

Vuln-1 A-1, B-1, B-2,
D-1, CA-1

Vuln-2 A-2, CA-2

Vuln-3 D-2, CA-3

Vuln-4 C-1

CRS PoV Variant of

CRS A A-1 Vuln-1

CRS A A-2 Vuln-2

CRS B B-1 Vuln-1

CRS B B-2 Vuln-1

CRS C C-1 Vuln-4

CRS D D-1 Vuln-1

CRS D D-2 Vuln-3

Challenge Author CA-1 Vuln-1

Challenge Author CA-2 Vuln-2

Challenge Author CA-3 Vuln-3

AIxCC Procedures & Scoring Guide V2 Page 35 of 39

2. To enable a CRS to improve its submissions over the course of the challenge window.

3. To remove opportunities for cheating and other negative behaviors.

Align with Real-world Value

The patch selection process aims to select the “best set” of patches among all submitted patches by a

CRS, for a given challenge task. This selection prioritizes rewarding patch specificity, and then prioritizes

choosing a minimal set that remediates the highest number of challenge vulnerabilities.

Enable Patch Improvement

Next, the selection process prioritizes the last-submitted patch by a CRS. This allows a CRS to submit

updated patches for the same challenge vulnerabilities with changes or improvements (note, however, this

will affect accuracy).

In the simplest case of a CRS submitting patches which remediate individual challenge vulnerabilities,

this selection process reduces to simply scoring the last-submitted patch for each vulnerability.

Remove Opportunities for Cheating and Negative Behaviors

The patch selection process aims to remove any opportunity for a CRS to gain unearned points through

composing submission sets that game the scoring system. The number of patches selected for scoring will

be no more than the total number of remediated vulnerabilities for the challenge.

Further details and specifics on the patch selection process can be reviewed within the competition

github10.

10 See https://github.com/aixcc-finals/example-crs-architecture for more details on patch selection.

https://github.com/aixcc-finals/example-crs-architecture

AIxCC Procedures & Scoring Guide V2 Page 36 of 39

5 Unscored Research

Competitors will be encouraged to perform certain tasks or provide artifacts within the competition that

will not impact their score but are focused on highlighting the potential for innovation.

All aspects described within this section do not impact score. The purpose of this is to generate

artifacts which can help further innovation within the space and facilitate mechanisms for teams to submit

elements that they can obtain after a round to help improve their CRS.

5.1 Unharnessed Challenges

One area of unscored research is answering challenges that do not use the existing harnesses provided

within a challenge repository. During competition rounds, teams may be tasked with specific challenges

that focus on instrumenting unharnessed challenges which will be indicated by a task field which will be

captured in the repository mentioned in section 1.7.1 regarding the API details. AIxCC Organizers will

communicate more details about these either as a document update, a message in the #announcement

Slack channel, within the round details or some combination thereof. No submissions against unharnessed

challenges will impact the team score, and unharnessed challenges will never be tasked concurrently with

challenges that do impact the team score.

Unharnessed challenges will take advantage of the unharnessed artifact endpoint described in section 5.4.

5.2 Unscored Research Budgets

Participation in unscored research areas are voluntary but allow teams further opportunities to obtain

additional feedback from their CRS between rounds. Teams will be notified in the round details if AIxCC

Organizers intend to task CRSs with unharnessed challenges during a round.

Engagement in unscored research as written in Section 5 is optional, and there will not be dedicated

budgets for this tasking.

5.3 Unscored Research Outputs

Teams will receive artifacts from this unscored research. The intention is that artifacts from unscored

research will be included as part of the competition archive format outlined in section 1.10. Thus, team

performance on unscored research will be made publicly available as part of the competition archive.

5.4 Unscored Research Recognition

As per the section 5 summary, these focus areas will not impact competitor scores in the final round.

However, it is possible that teams could receive recognition for certain achievements as part of this focus

area during or after the completion of the competition.

5.5 Unharnessed Artifact Endpoint

The AIxCC organizers will provide a dedicated endpoint where a CRS can submit artifacts related to

unharnessed discoveries. Teams will be notified when this endpoint is available in round detail updates.

Teams may utilize this endpoint for any challenge in cases where they want to explore harness expansion

or unharnessed code to highlight CRS capabilities, but no submissions to this endpoint for any challenge

will impact the team score.

AIxCC Procedures & Scoring Guide V2 Page 37 of 39

● Appendix A - Acronyms

Acronym Description

AFC AIxCC Final Competition

AIxCC Artificial Intelligence Cyber Challenge

AM Accuracy Multiplier

API Application Programming Interface

ASC AIxCC Semifinal Competition

BDL Bundle Score

CRS Cyber Reasoning System

DARPA Defense Advanced Research Projects Agency

JSON JavaScript Object Notation

LLM Large Language Model

OSI Open Source Initiative

PRS Program Repair Score

SAS SARIF Assessment Score

VDS Vulnerability Discovery Score

AIxCC Procedures & Scoring Guide V2 Page 38 of 39

● Appendix B - MIT License File

The MIT License below is an example of a license approved by the Open Source Initiative (OSI). Teams

may use others in compliance with the Open Source Requirement as specified in Section 3.4 of the

AIxCC Rules.

Instructions

1. Copy the text of the license below into the file.

2. Create a text file named LICENSE in the root of your CRS source code repository.

3. Perform initial commit to your CRS source code repository.

The MIT License (MIT)

Copyright (c) 2025 AIxCC Finals

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and

associated documentation files (the "Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the

following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial

portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

AIxCC Procedures & Scoring Guide V2 Page 39 of 39

● Appendix C - Round Execution Arbitration Process

During round execution, AIxCC Organizers may be confronted with an issue or concern which is best

resolved with feedback from DARPA leadership and/or competitors.

The arbitration process provides a mechanism to resolve these issues in a fair way that removes the

appearance of AIxCC Organizer bias that could result from decisions made without competitor feedback.

It provides a pathway to solicit and receive anonymous feedback from competitors in these situations.

○ Arbitration Process Framework

If, during execution of a round, AIxCC Organizers are confronted with an issue they cannot resolve or

determine that competitor feedback is warranted, the issue will be communicated to DARPA leadership

along with possible courses of action. If DARPA leadership determines a course of action, the action will

be taken.

If however, DARPA leadership determines the issue or concern should be presented to competitors, they

may invoke the arbitration, and the following will take place:

1. AIxCC Organizers will post a message in the AIxCC Finalists Slack channel #arbitration. The

message will describe the issue and provide a finite list of potential courses of action.

2. Competitor teams will be provided 24 hours to review the issue.

3. Competitor team leads will vote on the issue by sending their team vote to DARPA leadership at

aixcc@darpa.mil.

4. DARPA leadership will tally the vote. In the event of a tie, the DARPA program manager will

serve as the tie-breaking vote.

5. Competitors and AIxCC Organizers will be notified of the decision and path forward.

mailto:aixcc@darpa.mil

	1 Overview
	1.1 Document Purpose
	1.2 Document Terminology
	1.3 AFC Rounds Format
	1.4 Schedule
	1.5 Round Details
	1.6 AFC Objectives
	1.7 Document Status
	1.8 Competition Archive

	2 Challenges
	2.1 Overview
	2.2 Challenge Basis
	2.3 Challenge Harness
	2.3.1 Analysis Tooling

	2.4 Languages
	2.5 Challenge Vulnerabilities
	2.5.1 Challenge-Introduced Vulnerabilities
	2.5.2 Zero-Day Vulnerabilities

	2.6 Challenge Parameters
	2.6.1 Challenge Deadline
	2.6.2 Challenge Types

	2.7 Functional Tests
	2.8 Challenge Examples

	3 Cyber Reasoning System (CRS)
	3.1 Overview
	3.1.1 Competition API Submission Evaluation
	3.1.1.1 Completeness Checks
	3.1.1.2 Automated Verification
	3.1.1.3 Post-Round Analysis and Audits

	3.2 Vulnerability Discovery
	3.2.1 Proof of Vulnerability (PoV)
	3.2.1.1 Variant PoVs

	3.2.2 Proof of Vulnerability Submission
	3.2.2.1 Duplicate PoVs

	3.2.3 Proof of Vulnerability Evaluation
	3.3 Patching
	3.3.1 Generated Patches
	3.3.2 Generated Patch Submission
	3.3.2.1 Duplicate Patches

	3.3.3 Generated Patch Evaluation

	3.4 SARIF Assessment
	3.4.1 SARIF Assessment Criteria
	3.4.2 SARIF Assessment Submission
	3.4.3 SARIF Assessment Evaluation

	3.5 SARIF Generation
	3.5.1 SARIF Report Submission

	3.6 Bundling
	3.6.1 Bundle Submission

	3.7 CRS Development Constraints
	3.7.1 Azure Subscription
	3.7.1.1 Azure Development Budget

	3.7.2 GitHub Repositories
	3.7.2.1 LICENSE File

	3.7.3 Custom Models
	3.7.3.1 Custom Model License

	3.8 Framework APIs and Specifications
	3.8.1 Telemetry Specification

	3.9 CRS Solution Deadlines
	3.10 Round Execution Constraints
	3.10.1 CRS Provisioning and Startup
	3.10.2 Post Round
	3.10.3 Round Execution Budgets and Limits
	3.10.3.1 Azure and LLM Budget Items
	3.10.3.2 LLM Round Execution Query Capacities

	3.10.4 Large Language Model API Telemetry
	3.10.5 Networking

	3.11 CRS Disqualification Guidelines
	3.11.1 No Superman Defenses
	3.11.2 No Malicious Patches
	3.11.3 No Phoning Home
	3.11.4 No Gaming the Scoring Algorithm
	3.11.5 No Hacking the Infrastructure
	3.11.6 No Misuse of Collaborator Credits and Resources
	3.11.7 No Obfuscation Tactics in Custom Models
	3.11.8 No Pre-baking Models
	3.11.9 No Gaming the Challenge Code Basis

	4 AFC Scoring
	4.1 Scoring Design Objectives
	4.1.1 Areas of Excellence

	4.2 Scoring Algorithm
	4.2.1 Team Score
	4.2.2 Challenge Score
	4.2.2.1 Accuracy Multiplier
	4.2.2.2 Vulnerability Discovery Score
	4.2.2.3 Program Repair Score
	4.2.2.4 SARIF Assessment Score
	4.2.2.5 Bundle Score

	4.2.3 Non-Scoring Excellence Recognition

	4.3 Further Details
	4.3.1 Accuracy Multiplier Calculations
	4.3.2 PoV Crash Evaluation Methodologies
	4.3.3 Deduplication Methodologies
	4.3.4 Patch Scoring Extended
	4.3.5 Scoring Patch Selection Process

	5 Unscored Research
	5.1 Unharnessed Challenges
	5.2 Unscored Research Budgets
	5.3 Unscored Research Outputs
	5.4 Unscored Research Recognition
	5.5 Unharnessed Artifact Endpoint

	● Appendix A - Acronyms
	● Appendix B - MIT License File
	● Appendix C - Round Execution Arbitration Process
	○ Arbitration Process Framework

